首页> 外文OA文献 >TOA-based passive localization of multiple targets with inaccurate receivers based on belief propagation on factor graph
【2h】

TOA-based passive localization of multiple targets with inaccurate receivers based on belief propagation on factor graph

机译:基于TOa的多个目标的被动定位具有不准确性   基于因子图上的置信传播的接收机

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Location awareness is now becoming a vital requirement for many practicalapplications. In this paper, we consider passive localization of multipletargets with one transmitter and several receivers based on time of arrival(TOA) measurements. Existing studies assume that positions of receivers areperfectly known. However, in practice, receivers' positions might beinaccurate, which leads to localization error of targets. We propose factorgraph (FG)-based belief propagation (BP) algorithms to locate the passivetargets and improve the position accuracy of receivers simultaneously. Due tothe nonlinearity of the likelihood function, messages on the FG cannot bederived in closed form. We propose both sample-based and parametric methods tosolve this problem. In the sample-based BP algorithm, particle swarmoptimization is employed to reduce the number of particles required torepresent messages. In parametric BP algorithm, the nonlinear terms in messagesare linearized, which results in closed-form Gaussian message passing on FG.The Bayesian Cramer-Rao bound (BCRB) for passive targets localization withuncertain receivers is derived to evaluate the performance of the proposedalgorithms. Simulation results show that both the sample-based and parametricBP algorithms outperform the conventional method and attain the proposed BCRB.Receivers' positions can also be improved via the proposed BP algorithms.Although the parametric BP algorithm performs slightly worse than thesample-based BP method, it could be more attractive in practical applicationsdue to the significantly lower computational complexity.
机译:现在,位置感知已成为许多实际应用的重要要求。在本文中,我们考虑基于到达时间(TOA)的测量,利用一个发射机和多个接收机对多个目标进行被动定位。现有研究假设接收机的位置是完全已知的。然而,实际上,接收器的位置可能不正确,这会导致目标的定位误差。我们提出了基于因子图(FG)的置信传播(BP)算法来定位被动目标并同时提高接收器的定位精度。由于似然函数的非线性,因此无法以封闭形式导出FG上的消息。我们提出了基于样本的方法和参数方法来解决此问题。在基于样本的BP算法中,采用了粒子群优化算法来减少表示消息所需的粒子数量。在参数化BP算法中,消息中的非线性项被线性化,从而导致封闭形式的高斯消息在FG上传递。针对不确定接收器的被动目标定位,导出了贝叶斯Cramer-Rao界(BCRB)以评估所提出算法的性能。仿真结果表明,基于样本的BP算法和基于参数BP的算法均优于常规方法,并且达到了建议的BCRB的要求。通过所提出的BP算法也可以改善接收机的位置。尽管参数BP算法的性能比基于样本的BP方法稍差,由于计算复杂度大大降低,因此在实际应用中可能更具吸引力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号